Different patterns of electrophysiological deficits in manifesting and non-manifesting carriers of the DYT1 gene mutation.
نویسندگان
چکیده
A mutation in the DYT1 gene on chromosome 9q34 causes early-onset primary torsion dystonia with autosomal dominant inheritance but low phenotypic penetrance. The aim of the present study was to assess the functional consequences of the DYT1 gene, by comparing the electrophysiology of cortical and spinal circuits in clinically affected and unaffected carriers of the DYT1 gene mutation. We assessed intracortical inhibition (ICI), intracortical facilitation (ICF), the cortical silent period (SP) and spinal reciprocal inhibition (RI) in 10 manifesting DYT1 gene carriers (MDYT1), seven non-manifesting DYT1 gene carriers (NMDYT1) and 13 healthy controls. The MDYT1 subjects had abnormalities similar to those seen in previous studies of non-genetically characterized individuals with primary dystonia. They had reduced ICI, shorter SP and absent presynaptic phase of RI compared with the healthy controls. NMDYT1 subjects also had a significant reduction in cortical inhibition (ICI and SP), but their spinal RI was not different from controls. We conclude that clinical expression of dystonia depends on widespread electrophysiological deficits, and the presence of the DYT1 gene mutation itself leads only to a subset of these changes. This is consistent with the hypothesis that additional environmental/genetic insults may be needed to reveal clinical symptoms in DYT1 gene carriers.
منابع مشابه
The Dystonic Brain: Electrophysiological Investigation of Carriers of the DYT1 Gene Mutation
A mutation in the DYT1 gene on chromosome 9q34 is the commonest cause of young-onset primary dystonia. The penetrance of clinical symptoms is low (only 30-40% of gene carriers manifest dystonia), and occurs in an agedependent fashion. Mutation carriers who pass their mid-twenties without developing symptoms almost invariably stay symptom free for life. DYT1 mutation carriers therefore provide a...
متن کاملDefective temporal processing of sensory stimuli in DYT1 mutation carriers: a new endophenotype of dystonia?
DYT1 primary torsion dystonia is an autosomal dominant movement disorder due to a 3-bp GAG deletion in the TOR1A gene, which becomes manifest in only 30-40% of mutation carriers. Investigating the factors regulating this reduced penetrance might add new insight into the mechanisms underlying the disease. The pathophysiology of dystonia has been related to basal ganglia dysfunctions that lead to...
متن کاملImpaired sequence learning in dystonia mutation carriers: a genotypic effect.
Abnormalities in motor sequence learning have been observed in non-manifesting carriers of the DYT1 dystonia mutation. Indeed, motor sequence learning deficits in these subjects have been associated with increased cerebellar activation during task performance. In the current study, we determined whether similar changes are also present in clinically manifesting DYT1 carriers as well as in carri...
متن کاملImpaired body movement representation in DYT1 mutation carriers.
OBJECTIVE The only known genetic cause of early-onset primary torsion dystonia is the GAG deletion in the DYT1 gene. Due to the reduced penetrance, many mutation carriers remain clinically asymptomatic, despite the presence of subclinical abnormalities, mainly in the motor control circuitry. Our aim was to investigate whether the DYT1 mutation impairs the inner simulation of movements, a fundam...
متن کاملIncreased risk for recurrent major depression in DYT1 dystonia mutation carriers.
BACKGROUND Prior studies suggest that dystonia is comorbid with affective disorders. This comorbidity could be a reaction to a chronic debilitating disorder or expression of a predisposing gene. The authors took advantage of the identification of a gene for dystonia, DYT1, to test these alternative explanations. METHODS The authors administered a standardized psychiatric interview to members ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 126 Pt 9 شماره
صفحات -
تاریخ انتشار 2003